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 Source of differences in the results 

 Input data 
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 Variance estimation 
 Normalization 
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RNA-Seq 
 Gene expression is the transcription of the DNA in a 

gene into mRNA, which (in many cases) is later 
translated into a protein. 

 We can measure expression of a single gene with PCR 
or other assays. 

 Gene expression arrays measure expression of many 
genes simultaneously using spots each of which 
contains a matching sequence to the gene sequence to 
be detected. 

 But this can only detect what we already suspected 
might be there. 



RNA-Seq 
 For RNA-Seq, the RNA in the sample is reverse 

transcribed into the corresponding DNA sequence. 
 Then the DNA fragments are sequenced (in an NGS 

sequencer, usually Illumina ) 
 Each fragment is mapped to the reference genome 
 The data to be analyzed are the number of fragments 

mapping to each gene in a table where the columns are 
samples and the rows are genes.  



RNA-Seq 
 This mapping can be complex  
 We can choose to estimate isoforms or not 
 We can choose how to handle ambiguous reads (omit 

or spread across genes) 
 We can then use statistical analysis to determine when 

there is significantly more expression in one condition 
or another. 

 This may or may not be better than an expression array 
depending on goals. 



Analysis of RNA-Seq Data 
 For each gene/exon/isoform (we will say gene from 

now on), and for each sample, we have a count of 
fragments mapping to that gene. 

 In principle, we need to test whether the counts from 
one group are significantly larger than another. 

 Or we may have more than one factor or variable that 
could be associated. 

 In practice, we may (probably) need to normalize the 
samples first, and may need to import some 
information across genes. 



Existing Methods 
 Existing methods often contain complex combinations 

or filtering, normalization, transformation, and 
variance estimation before any statistical tests are 
performed. 

 The methods are often poorly documented and change 
rapidly and often substantially between frequent 
versions, without any push notice. 

 The results of different methods such as DESeq, 
edgeR, and voom/limma can differ substantially. 

 It appears that most methods produce large numbers 
of false positives. 



Bottomly Data 
 Two inbred mouse strains, C7BL6/6J (10 animals) and 

DBA/2J (11 animals) 
 Gene expression in striatal neurons by RNA-Seq and 

expression arrays. 
 36,536 unique genes of which 11,870 had a count of at 

least 10 across the 21 samples. 
 This data set has been used in other comparisons 
 First, we compare three methods on this data set. 
 Later we construct data sets where the null hypothesis 

is true. 
 



825 Genes Significant 
by at least one 
method 
 
486 by all methods 
 
More “significant” 
genes by edgeR 
 
Is this greater power 
or is the test 
producing false 
positives? 



Null Behavior 
 100 randomly selected subsets of size 6 out of the 10 

C7BL6 mice (out of the 210 possible) 
 In each subset, 3 assigned to treatment and 3 to 

control at random (out of 10 possible divisions). 
 The null hypothesis is on the average true. 
 Given the 11,870 genes with large enough counts, we 

would expect about 0.1% to be significant at the p = 
0.001 level. 

 We have 1,187,000 tests, so there should be about 1187 
rejections for each method  



Significant at p = 0.001 
Null Hypothesis is True 

Estimator Observed Expected Over-Rejection 
DESeq 2475 1187 209% 
edgeR 5694 1187 480% 
limma-Voom 2732 1187 230% 





Important Factors 
 These methods share some features but differ in their 

implementation. 
 All of them treat the data as over-dispersed Poisson, or 

specifically negative binomial 
 They may use a test based on the negative binomial 

distribution, but limma-Voom uses standard 
regression/anova with variance-based weights 

 Since sample sizes tend to be small, they all have the 
possibility to replace the variance estimate from a given 
gene with a smoothed estimate based on all the genes. 

 Normalization may be needed due to the differing total 
numbers of reads 



Factors That May Cause False Positives 
 Normalization procedure 

 Normalization driven by high-abundance transcripts can 
cause spurious significance of low abundance ones. 

 Variance estimation 
 Many methods “borrow strength” from other genes to get 

“better” variance estimates. 
 This may cause bias 

 Statistical test used 
 Many choices 

 Nature of the data  
 May require filtering 



Statistical Test 
 Example gene from Bottomly data 

 ENSMUSG00000042638 
 C57BL/6J 
  2, 7, 9, 11, 3, 7, 1, 1, 2, 1 
 Median 2.5, Mean 4.4, sd 3.75, var 14.04 
 DBA/2J 
  8, 6, 12, 10, 19, 15, 17, 6, 20, 6, 14 
 Median 12, Mean 12.09, sd 5.28, var 27.89 





Poisson Analysis 
 One of the first ideas was that the counts might be Poisson 

distributed and that we could use this for statistical tests. 
 In this case, if the null hypothesis was true, then the 21 

observations came from the same Poisson distribution with 
observed mean 8.429 and with variance also estimated at 
8.429 (Poisson distributions have mean and variance that 
are equal). 

 This implies that the variance of the mean of the 10 
C7BL/6J counts should be 8.429/10 and the variance of the 
mean of the 11 DBA/2J counts should be 8.429/11 

 So we can use z = (4.40 – 12.09)/√(8.429/10 + 8.429/11) =  
−6.06 to test the difference 
 
 



Poisson Analysis 
 This turns out to be a terrible idea.  
 Frequently, the variance of the data is much larger than the 

mean. We can call this overdispersion. 
 C57BL/6J  

 Mean 4.4, Variance 14.04 
 DBA/2J 

 Mean 12.09, Variance 27.89 
 Also, Poisson analysis can be done with one treatment and 

one control, and any belief that statistical evidence can be 
gathered with no biological replicates is evidence of 
terminal delusion! 
 



Over-dispersed Poisson Analysis 
In this case, we estimate the means and the variances from the data 
using either the negative binomial distribution 
or simply an over-dispersed Poisson. 
These yield similar results.

In either case, we 
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model the data in such as way that, for a given gene
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> summary(glm(y1~strain,family=poisson)) 

 

Coefficients: 

             Estimate Std. Error z value Pr(>|z|)     

(Intercept)    1.4816     0.1508   9.828  < 2e-16 *** 

strainDBA/2J   1.0108     0.1739   5.812 6.16e-09 *** 
 

(Dispersion parameter for poisson family taken to be 1) 

 

> anova(glm(y1~strain,family=poisson),test="Chisq") 

 

       Df Deviance Resid. Df Resid. Dev  Pr(>Chi)     

NULL                      20     90.976               

strain  1   38.778        19     52.198 4.749e-10 *** 
 

 

 

First test is Wald test, second is likelihood ratio test. 
But Poisson assumption is not valid. 



> summary(glm(y1~strain,family=quasipoisson)) 

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept)    1.4816     0.2489   5.952 9.94e-06 *** 

strainDBA/2J   1.0108     0.2871   3.520  0.00229 **  
 

(Dispersion parameter for quasipoisson family taken to be 2.72605) 

 

> anova(glm(y1~strain,family=quasipoisson),test="Chisq") 

 

       Df Deviance Resid. Df Resid. Dev  Pr(>Chi)     

NULL                      20     90.976               

strain  1   38.778        19     52.198 0.0001622 *** 



> summary(glm.nb(y1~strain)) 

 

Coefficients: 

             Estimate Std. Error z value Pr(>|z|)     

(Intercept)    1.4816     0.2052   7.219 5.24e-13 *** 

strainDBA/2J   1.0108     0.2594   3.897 9.73e-05 *** 
 

(Dispersion parameter for Negative Binomial(5.1558) family taken to be 1) 

 

> anova(glm.nb(y1~strain),test="Chisq") 

 

       Df Deviance Resid. Df Resid. Dev Pr(>Chi)     

NULL                      20     38.657              

strain  1   15.437        19     23.220 8.53e-05 *** 



P-values (× 105) 
Wald LR 

Quasi-Poisson 228.72 16.22 

Negative Binomial 9.73 8.53 

 Both the Wald test and the likelihood ratio test are 
valid asymptotically. 

 The quasi-Poisson and negative binomial should be 
equivalent asymptotically 

 But in finite samples there can be substantial 
differences  



> t.test(y1~strain) 

 

        Welch Two Sample t-test 

t = -3.8746, df = 18.007, p-value = 0.00111 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

 -11.860987  -3.520831 

sample estimates: 

mean in group C57BL/6J   mean in group DBA/2J  

               4.40000               12.09091  

 

 

Similar results to that using the negative binomial. 



Is the Test Statistic Important? 
Not so much 

Test Reject at 5% Reject at 1% Reject at 0.1% 

t-test 4.9% 0.90% 0.11% 

Wilcoxon Test 4.6% 0.74% 0.03% 

NB Likelihood Ratio Test 5.2% 0.95% 0.13% 

NB Wald Test 5.7% 1.16% 0.22% 

4.8% – 5.2% 0.90% – 1.11% 0.07% – 0.12% 

• Simulated negative binomial count data 
• Two groups of 10 
• Mean 5 and variance 6 
• 10,000 trials 



Normalization 
 Normalization is commonly used in differential 

expression analysis with microarrays. 
 Normalization for RNA-Seq is often couched in terms 

like  “library size” as if we should divide by the total 
(mapped) fragment count 

 This can be problematic because it depends on only a 
few genes. 

 Mostly, normalization in RNA-Seq is done with a 
single constant per sample, though this is unusual 
with expression arrays 



Library Size Normalization 
 Using the total fragment count is problematic because 

highly expressed genes will provide most of the fragments 
 Four genes with expression 10,000, 100, 150, 200 in 

condition A and 20,000, 100, 150, 200 in condition B. 
 Normalized fragment counts use total fragment counts of 

10,450 and 20,450 and can be normalized to 15,450 
 Normalized fragment counts are 14,785, 148, 222, 296 in 

condition A and 15,110, 76, 113, 151 in condition B, so up-
regulation of gene 1 has been turned into down-regulation 
of the other three. 

 Fold changes are 2.0, 1.0, 1.0, 1.0 before “normalization” and 
1.02, 0.51, 0.51, 0.51 after. 



Normalization Methods 
 Total count 
 Quantile Normalization of other signal based methods 
 Geometric normalization (Cuffdiff2/DESeq version) 

 For each gene, compute the geometric mean of the total 
fragment count across libraries 

 Library “size” is the median across genes of the total fragment 
count divided by the geometric mean fragment count. 

 In our 4-gene example, the geometric means are 14,142, 100, 
150, 200, the ratios for A are 0.707, 1, 1, 1 and for B are 1.414, 1, 1, 
1, so the size factors are the medians, namely 1 and 1 
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 Cuffdiff2 first normalizes replicates under the same 
conditions giving an internal library size of sj 

 Then the arithmetic mean of the scaled gene counts for 
each gene is used to compute an external library size of ηj. 

 This is a possible source of problems, the scale of which is 
unknown 



Variance Estimation 
 Many RNA-Seq experiments are small. 
 Small studies have low power 
 Very small p-values are needed to pass the false 

discovery filter 
 So the default for small studies is no results 
 Suppose two means differ by one standard deviation 
 With 10,000 genes, the Bonferroni level is 5×10-7 

 With two groups of 3, there are ~4df and 5×10-7 
corresponds to almost 50 standard deviations 



Variance Estimation 
 If we use tests that reference only the data from the 

specific gene, then usually variance estimation is not a 
problem. 

 But with small sample sizes, the power is low, so there 
is a temptation to “improve” the variance estimates by 
smoothing or shrinkage. 

 The variance of a negative binomial increases with the 
mean in a way controlled by a variance parameter. 

 We can smooth the plot of the sample variance vs. the 
mean and use the smoothed estimate instead of the 
per-gene estimate. 
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Variance Estimation 
 The sample variance is an unbiased estimate of the 

population variance 
 A smoothed variance will be biased down or up 

depending on the data point 
 While this can reduce the MSE of estimating the 

variance, it may increase false positives and false 
negatives for tests based on those variance estimates 

 This is a possible source of the differences in results in 
various methods of analysis. 



Conclusions 
 Analysis of RNA-Seq data is still in the early stages of 

development. 
 Existing programs vary substantially in the results and 

it is unclear which is the most reliable 
 More work is needed that focuses on the fundamental 

components of analysis, particularly variance 
estimation and sample normalization. 
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